[1] Q. Chen, GA. Thouas. Metallic implant biomaterials, Materials Science and Engineering,
87 (2015) 1-57, doi: 10.1016/j.mser.2014.10.001.
[2] K. Shemtov-Yona and D. Ritter. On the mechanical integrity of retrieved dental implants, J. Mech. Behav. Biomed. Mater: Rep.,
49 (2015) 290–299. doi; 10.1016/j.jmbbm.2015.05.014.
[3] K.J. Franz and A.F. Hehmeyer. Introduction: Metals in Medicine, Chem. Rev. 119(2019) 727−729, DOI: 10.1021/acs.chemrev.8b00685
[4] K. Dabrowia, .C. James . Metals in Medicine, Inorganic Chemica Acta. 393(2012) 1-2, doi.10.1016/j.ica.2012.07.022.
[5] I. Gotman. Characteristics of Metals Used in Implants, Journal of Endourology, 11(1998) 383-389, doi:
10.1089/end.1997.11. 383.
[6] J. M. Calderon-Moreno et al. Microstructural and mechanical properties, surface and electrochemical characterization of a new Ti--Zr--Nb alloy for implant applications, Journal of Alloys and Compounds, 612(2014) 398-410, doi:
10.1016/j.jallcom.2014.05.159
[7] A.D. Marter, A.S. Dickinson, F. Pierron, et al. A Practical Procedure for Measuring the Stiffness of Foam like Materials, Experimental Techniques 42 (2018) 439–452, doi. 10.1007/s40799-018-0247-0
[8] S S Sharma, Y S Rajpoot. Development of aluminum metal foam using blowing agent, IOP Conference Series: Materials Science and Engineering, 377 (2018), doi:10.1088/1757-899X/377/1/012150.
[9] S. Ahmad, N. Muhamad, J. Sahari, et al. Characterisation of Titanium Foams Sintered at Different Temperatures Prepared by the Slurry Method, Sains Malaysiana; Journal, 39 (2010) 77-82.
[10] M. Geetha, A. K. Singh, R. Asoka Mani, and A. K. Gogia. Ti based biomaterials, the ultimate choice for orthopedic implants--a review, Prog. Mater. Sci.,
54 (2009) 397-425, doi: 10.1016/j.pmatsci.2008.06.004.
[11] A. Chouhan, Synthesis and Characterization of Ti-foam using NaCl as space holder, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 2015.
[12] CE WEN. Novel titanium foam for bone tissue engineering, Journal of Materials Research, 17(2002) 2633 – 2639, doi. 10.1557/JMR.2002.0382.
[13] Y. xuezheng. Mechanical Properties of Titanium Foams Having Disordered and Ordered Cell Structures, Tokyo Metropolition University, 2017.
[15] A. R. Selfridge. Approximate material properties in isotropic materials, IEEE Xplore, ,32(1985) 381–394, doi. 10.1109/ T-SU.1985.31608.
[16] M. Giner, E. Chicardi, A. Costa. Et al; Biocompatibility and Cellular Behavior of TiNbTa Alloy with Adapted Rigidity for the Replacement of Bone Tissue, Metals, MDPI, 130 (2021) 1-14. doi. 10.3390/met110101302021.
[17] A.A. Khalili and M.R. Ahmad. A Review of Cell Adhesion Studies for Biomedical and Biological Applications, Int. J. Mol. Sci. 16(2015) 18149–18184, doi:
10.3390 / ijms160818149
[18] O. El-Kady, and A. Fathy. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix Nano composites, Materials & Design,
54(2014) 348-353, doi. /10.1016/j.matdes.2013.08.049
[19] A. Manonukul . P. Srikudvien and M. Tange, Microstructure and Mechanical Properties of Commercially Pure Titanium Foam with Varied Cell Size Fabricated by Replica Impregnation Method, Materials Science & Engineering A. 650(2016) 432-437. .doi.10.1016/j.msea.2015.10.074.
[20] M. E. Dizlek, M. Guden, et al. Processing and compression testing of Ti6Al4V foams for biomedical applications, Journal of Materials Science, 44(2009) 1512–1519, doi 10.1007/s10853-008-3038-7
[21] M.Y. Zakaria, M.I. Ramli, A.B. Sulong, N.Muhamad, M.H. Ismail. Application of sodium chloride as space holder for powder injection molding of alloy Titanium- Hydroxyapatite composites, Journal of Materials Research and Technology,
12(2021) 478-482, doi. 10.1016/j.jmrt.2021.02.087.
[23]
S. Kaur,
K. Ghadirinejad and
R.H. Oskouei, An Overview on the Tribological Performance of Titanium Alloys with Surface Modifications for Biomedical Applications, lubricants 65 (2019) 1-15, doi: 10.3390/ lubricants7080065.
[24] J.W. Nicholson. Titanium Alloys for Dental Implants: A Review, prosthesis, MPDI, 2(2020) 100–116; doi: 10.3390/ prosthesis2020011.
[25] D. P. Mondal, M. Patel, S.Das,
A.K.Jha, G.Gupt, S.B.Ary,Titanium foam with coarser cell size and wide range of porosity using different types of evaporative space holders through powder metallurgy,
Materials & Design,
63 (2014) 89-99, doi. 10.1016/ j. matdes.2014.05.054
[26] O. Cetinel, Z. Esen and B. Yildirim. Fabrication, Morphology Analysis, and Mechanical Properties of Ti Foams Manufactured Using the Space Holder Method for Bone Substitute Materials, Metals, MDPI, 9-340(2019); doi: 10.3390/ met9030340