• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
International Journal of Materials Technology and Innovation
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 5 (2025)
Volume Volume 4 (2024)
Volume Volume 3 (2023)
Volume Volume 2 (2022)
Issue Issue 2
Issue Issue 3
Issue Issue 1
Volume Volume 1 (2021)
Elwakeil, A. (2022). Interaction Mechanism of U(VI) with Redox Active Covalent Organic Framework: EXAFS Spectroscopy and XPS analysis. International Journal of Materials Technology and Innovation, 2(1), 29-34. doi: 10.21608/ijmti.2021.103513.1042
A. S. Elwakeil. "Interaction Mechanism of U(VI) with Redox Active Covalent Organic Framework: EXAFS Spectroscopy and XPS analysis". International Journal of Materials Technology and Innovation, 2, 1, 2022, 29-34. doi: 10.21608/ijmti.2021.103513.1042
Elwakeil, A. (2022). 'Interaction Mechanism of U(VI) with Redox Active Covalent Organic Framework: EXAFS Spectroscopy and XPS analysis', International Journal of Materials Technology and Innovation, 2(1), pp. 29-34. doi: 10.21608/ijmti.2021.103513.1042
Elwakeil, A. Interaction Mechanism of U(VI) with Redox Active Covalent Organic Framework: EXAFS Spectroscopy and XPS analysis. International Journal of Materials Technology and Innovation, 2022; 2(1): 29-34. doi: 10.21608/ijmti.2021.103513.1042

Interaction Mechanism of U(VI) with Redox Active Covalent Organic Framework: EXAFS Spectroscopy and XPS analysis

Article 6, Volume 2, Issue 1, April 2022, Page 29-34  XML PDF (474.48 K)
Document Type: Original Article
DOI: 10.21608/ijmti.2021.103513.1042
View on SCiNiTO View on SCiNiTO
Author
A. S. Elwakeil email
Nuclear materials Authority, P.O Box 540 El Maadi, Cairo, Egypt.
Abstract
Treatment of nuclear waste containing low or high level of uranium concentration is one of the critical problems in the radioactive waste management and environmental remediation. Covalent organic frameworks (COFs) are highly promising class of materials for uranium extraction due to high surface area, high stability under harsh environment and tunable structure. In this work, we investigated the interaction of uranium with highly stable redox active covalent organic framework by extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray photoelectron spectroscopy (XPS). More important, redox active COF has succeeded to reduce uranium concentration in contaminated solution from 1 ppm which 33.3 times higher than Environmental Protection Agency Limit (EPA) for uranium concentration in drinking water to less than 0.09 ppb. The obtained results make our redox active COF a promising adsorbent for uranium decontamination from aqueous solution.
Keywords
Uranium extraction; Covalent organic framework; EXAFS; XPS
Main Subjects
Nanoscience & Nanotechnology
References
[1]     M. Kaur, H. Zhang, L. Martin, T. Todd, Y. Qiang, Environ. Sci. Technol. 2013, 47, 11942−11959.

[2]     P.A. Kharecha, J.E. Hansen, Environ. Sci. Technol. 2013, 47, 4889−4895.

[3]     A. Markandya, P. Wilkinson, The Lancet 2007, 370, 979−990.

[4]     F. Lewis, M. Hudson, L. Harwood, Synlett 2011, 2011, 2609−2632.

[5]     X. Sun, H. Luo, S. Dai, Chem. Rev. 2012, 112, 2100–2128.

[6]     Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. Modern Nuclear Chemistry; Wiley-Interscience: Hoboken, NJ,       2006.

[7]     Choppin, G. R.; Khankhasayev, M. K. Chemical Separation Technologies and Related Methods of Nuclear Waste Management: Applications, Problems, and Research Needs; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1999.

[8]     Lan Ling and Wei-xian Zhang. J. Am. Chem. Soc. 2015, 137, 2788−2791

[9]     M. Tan, C. Huang, S. Ding, F. Li, Q. Li, L. Zhang, C. Liu, S. Li, Separation and Purification Technology, 2015, 146, 192–198.

[10]   A. Rout, K.A. Venkatesan, T.G. Srinivasan, P.R. Vasudeva Rao, Journal of Hazardous Materials, 2012, 221–222, 62-67.

[11]   T.A. Lasheen, M.E. Ibrahim, H.B. Hassib, A.S. Helal, Hydrometallurgy, 2014, 146, 175–182.

[12]   M.E. Ibrahim, T.A. Lasheen, H.B. Hassib, A.S. Helal, Journal of Dispersion Science and Technology, 2014, 35, 599-606.

[13]   R. Ruhela, N. Iyer, M. Yadav, A.K. Singh, R.C. Hubli, J.K. Chakravartty, Green Chem., 2015, 17, 827-830.

[14]   A.C. Sather, O.B. Berryman, J.R. Jr, Chem. Sci. 2013, 4, 3601 – 3605.

[15]   J. Qian, S. Zhang, Y. Zhou, P. Dong, D. Hua, RSC Adv. 2015, 5, 4153-4161. 

[16]   C. Gunathilake, J. Górka, S. Dai, M. Jaroniec, J. Mater. Chem. A, 2015, 3, 11650-11659.

[17]   S.D. Kolev, A.M. St John, R.W. Cattrall, Journal of Membrane Science, 2013, 425–426, 169-175.

[18]   S. Panja, P.K. Mohapatra, S.C. Tripathi, P.M. Gandhi, P. Janardan, Journal of Hazardous Materials, 2012, 237–238, 339-346.

[19]   I. Doroshenko, J. Zurkova, Z. Moravec, P. Bezdicka, J. Pinkas, Ultrasonics Sonochemistry, 2015, 26, 157-162.

[20]   G.I. Bouala, N. Clavier, R. Podor, J. Cambedouzou, A. Mesbah, H.P. Brau, J. Léchelle, N. Dacheux, CrystEngComm, 2014, 16, 6944-6954.

[21]   Y. Lio, M. Wang, D. Chen, Applied Surface Science, 2019, 484, 83-96.

[22]   C. Liu, P. Hsu, J. Xie, J. Zhao, T. Wu, H. Wang, W. Liu, J. Zhang, S. Chu, Y. Cui. Nature Energy 2017, 2, 17007.

[23]   D. Wang, J. Song, J. Wen, Y. Yuan, Z. Liu, S. Lin, H. Wang, H. Wang, S. Zhao, X. Zhao, M. Fang, M. Lei, B. Li, N. Wang, X. Wang, H. Wu, Adv. Energy Mater. 2018, 8, 1802607.

[24]   Xiao Xu, H. Zhang, J Ao, L. Xu, X. Liu, X. Guo, J. Li, L. Zhang, Q. Li, X. Zhao, B. Ye, D. Wang, F. Shend, H. Ma, Energy Environ. Sci., 2019, 12, 1979-1988.

[25]   A. S. Helal, E. Mazario, A. Mayoral, P. Decorse, R. Losno, C. Lion, S. Ammar, M. Hémadi. Environ. Sci.: Nano, 2018, 5, 158-168.

[26]   Q. Sun, B. Aguila, J. Perman, A. S. Ivanov, V. S. Bryantsev, L. D. Earl, C. W. Abney, L. Wojtas, S. Ma, Nature Communications, 2018, 9, 1644.

[27]   L. Zhou, M. Bosscher, C. Zhang, S. O¨zçubukçu, L. Zhang, W. Zhang, C. J. Li, J. Liu, M. P. Jensen and L. Lai, Nat. Chem., 2014, 6, 236.

[28]   S. O. Odoh, G. D. Bondarevsky, J. Karpus, Q. Cui, C. He, R. Spezia, L. Gagliardi.  J. Am. Chem. Soc. 2014, 136, 17484−17494.

[29]   M. Feng, D. Sarma, X. Qi, K. Du, X. Huang, M. G. Kanatzidis. J. Am. Chem. Soc. 2016, 138, 12578−12585.

[30]   M. Feng, D. Sarma, Y. Gao, X. Qi, W. Li, X. Huang, M. G. Kanatzidis. J. Am. Chem. Soc. 2018, 140, 11133−11140.

[31]   Q. Sun, B. Aguila, L. D. Earl, C. W. Abney, L. Wojtas, P. K. Thallapally, S. Ma. Adv. Mater. 2018, 30, 1705479.

[32]   X. H. Xiong, Z. W. Yu, L. L. Gong, Y. Tao, Z. Gao, L. Wang, W. H. Yin, L. X. Yang, F. Luo. Adv. Sci. 2019, 1900547.

[33]   L. Xu, D. Zhang, F. Ma, J. Zhang, A. Khayambashi, Y. Cai, L. Chen, C. Xiao, S. Wang. ACS Appl. Mater. Interfaces 2019, 11, 21619−21626.

[34]   R. Liu, Z. Wang, Q. Liu, F. Luo, Y. Wang. Eur. J. Inorg. Chem. 2019, 735–739.

[35]   W. Liu, Y. Wang, L. Song, M. A. Silver, J. Xie, L. Zhang, L. Chen, J. Diwu, Z. Chai, S. Wang, Talanta 2019, 196, 515–522.

[36]   C. R. DeBlase, K. E. Silberstein, T. Truong, H. D. Abruña, W. R. Dichtel. Journal of American Chemical Society 2013, 135, 45, 16821–16824.

[37]   C. W. Abney, R.T. Mayes, M. Piechowica, Z. Lin, V.S. Btryantsev, G.M. Veith, S. Dai, W. Lin. Energy Environmental Science, 2016, 9(2), 448-453.

 

Statistics
Article View: 232
PDF Download: 359
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.