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Abstract 

Expanding the application of the 6xxx aluminium alloy series across different industries presents challenges, particularly 

regarding the need for cost-effective welding techniques and optimal configurations to achieve high-quality joints. This 

research compared the joint performance of pipes and plates manufactured using friction stir welding (FSW). The AA6082 

alloy was utilized for both the pipes and plates involved in the study. This article outlines a methodical procedure for 

enhancing the aluminium alloy by applying FSW variables. FSW is frequently used to challenge welding connections for 

aluminium alloys. Welding input parameters primarily determine the weld quality. The rate of joint corrosion is greatly 

influenced by welding factors such as shoulder diameter, rotating speed, and welding speed. The aluminium alloy 6082 by 

FSW has been attempted to be joined in the current work utilizing a standard milling machine. FSW was done on 6082 

aluminium alloy plates that are 10 mm thick, pipes with a 53 mm outer diameter and a 4 mm wall thickness. Artificial neural 

networks (ANNs) have been created to predict the corrosion rate in FSW based on backpropagation (BP) of error. The tool 

diameter of the shoulder, the rotational speed of the tool, and the speed of welding are the model input parameters. The model 

output is the joint corrosion rate. Following that, the ANN was trained in utilizing experimental data. The ANN was tested by 

utilizing data from experiments, not through training. The findings indicated that the constructed neural network could be 

used as a potential method for determining the corrosion rate for specified process parameters, as the ANN results perfectly 

harmonized with the experimental data. 

Keywords: Friction Stir Welding, Flange, Artificial Neural Networks, Corrosion Rate. 

1. Introduction

Flange welding is a vital step in creating pipe 

networks. It's used to connect pipe components and 

repair damaged sections, allowing for the development 

of larger plumbing systems. Executing flange welding 

successfully requires a skilled welder who can 

navigate the various technical aspects. Welders are 

essential in the petrochemical industry, where their 

expertise is highly sought [1]. Welding is the key 

technique for effectively joining flanges, and 

mastering this skill is crucial since flanges serve as 

connectors for different pipe sections. This article 

demonstrates the best practices for welding flanges.   

The ring-type joint flange is a top choice for high-

pressure applications due to its ease of installation and 

compatibility with multiple flange types. When 

selecting a welding technique to attach the flange to 

the pipe, considerations such as base metal and flange 

type typically come into play. Nevertheless, the 

welding process remains similar to other commonly 

used methods [2,3]. 

To create a solid joint at the neck and lap junction 

between the pipe and the flange, you'll want to 

maintain a 1/16 to 1/8-inch gap. The first pass should 

penetrate the wall of both the pipe and flange 

assembly evenly to ensure a strong connection. The 

final pass should be approximately 1/16 inch larger 

than the outside diameter of the pipe [1]. 
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This method is highly regarded for its ability to 

produce a dependable joint that stands the test of time 

for users. It performs well under varying pressures and 

temperatures. When using slip-on flanges, it's essential 

to remember that the final products may need to be re-

grinded after welding. This technique is generally 

more labour- and cost-intensive than the traditional 

welding neck connection method, mainly due to the 

extra step of regrinding the completed pipe and flange. 

It's typically employed when a flawless, pit-free hole 

is required [1]. 

Tungsten Inert Gas (TIG) welding is the top choice 

for threaded flange connections because of its 

outstanding results. Manual orbital TIG welding is 

favoured for flange joints and similar setups, such as 

tube-to-tube sheet joints in shell and tube heat 

exchangers. Since flange and tube-to-tube sheet 

configurations can be intricate to weld, an experienced 

welder is needed. Using this welding technique 

requires the expertise of a skilled craftsman to create 

strong connections between the parts, ensuring there 

are no weak spots around the joint [4]. 

Fusion welding methods, including TIG and MIG, 

produce higher temperatures than the solid-state 

Friction Stir Welding (FSW) process. While fusion arc 

welding techniques reach temperatures that exceed the 

melting point of the base material, FSW does not 

require the same level of heat; instead, it needs a 

temperature above the recrystallization point. This 

modern solid-state welding technique avoids melting 

the base material entirely using a non-consumable [3]. 

Joining using a solid-state technique as FSW avoids 

melting and recasting the joined material. The FSW 

technique was developed in 1991 by The Welding 

Institute (TWI), UK. With this method, materials 

formerly conceived to be complicated to weld, as they 

tend to form melting flaws, can now be joined quickly. 

Over fusion welding, it has been found that the FSW 

technique offers several benefits [1]. Friction Stir 

Welding is inherently a stochastic process, akin to 

various fusion welding techniques, as it involves 

multiple factors that can affect the welding process. 

This complexity creates some uncertainty regarding 

the final characteristics of the weld, such as its quality 

and mechanical and metallurgical properties. 

Numerous studies have explored welding parameters, 

focusing on key factors such as rotational speed (N), 

linear speed (S), and plunging depth (D). 

In addition to these basic parameters, other factors 

like dwell duration, vibrational frequency, and tool pin 

shape also play significant roles in the welding 

outcome. Research has examined these variables, 

yielding valuable insights. For example, in their study 

to improve the FSW of aluminium AA6063 pipes, 

Pawar and Sheet highlighted crucial parameters that 

influence mechanical qualities and microstructure. 

They discovered that a higher tool rotational speed (N) 

coupled with a lower welding speed (S) leads to 

enhanced FSW performance. Moreover, they noted 

that the shape of the pin significantly affects friction at 

the interface, which in turn impacts the properties of 

the joint. 

Iftikhar et al. conducted extensive research on the 

weldability by FSW processes specifically for tube 

and tube-sheet configurations. Notably, a similar 

methodology was previously applied by Thekkuden et 

al. for creating leak-proof metallic tube-to-tube sheet 

joints. 

 Using material flow and friction heating, the non-

consumable rotation tool produces defect-free FSW 

zones [2]. The FSW tool geometry and process 

parameters significantly impact the material flow 

behaviour. The effect of the speed of rotation, speed of 

welding, and diameter of the shoulder on the corrosion 

rate of Al 6063 aluminium alloy was investigated by 

El-Kassas et al. [3]. 

The impact of processing factors on the 

microstructural and mechanical characteristics of FS 

welded joints made from AA 6082 was examined by 

Sabry et al. [4]. To determine a correlation between 

FSW parameters and the mechanical characteristics of 

aluminium plates, Sabry et al. utilized an artificial 

neural network (ANN). Numerous studies [5-11] have 

looked into how different welding parameters of the 

process impact the durability of FS welded joints 

made of other materials. Researchers have 

occasionally tried optimizing friction stir welding 

parameters using various optimization models and 

solution methodologies. The current study aims to 

utilize ANN to forecast the corrosion rate in FSW. 

Expanding the applications of the 6xx aluminium 

alloy series across different industries presents 

challenges, particularly regarding the need for cost-

effective welding techniques and optimal 

configurations to achieve high-quality joints. This 

research compares the joint performance of pipes and 

plates manufactured using friction stir welding (FSW). 

The AA6082 alloy was utilized for both the pipes and 

plates involved in the study. 

   This study explores the performance of flange 

joints prepared through friction stir welding (FSW) 

while incorporating artificial neural networks (ANN). 

https://dx.doi.org/10.21608/ijmti.2025.337737.1116
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Three key factors are investigated: shoulder diameter, 

rotating speed, and welding speed, each assessed at 

three levels. The focus is on how these variables affect 

the corrosion rate. The selected process parameters 

obviously influence the characteristics of friction stir 

welded flange joints made from two identical 

aluminium alloys. The investigation is organized into 

two main parts. First, each process parameter is 

analysed to understand its effect on the flange joint's 

performance. Then, the strategies used to enhance and 

meticulously assess these effects are examined, with a 

particular emphasis on the role of ANN. 

2. Experimental work 

2.1 Preparation of Materials and Experimentation 

For the current experimental investigations, a 

standard milling machine with a specially constructed 

fixture for FSW was used. The chemical makeup and 

mechanical characteristics of base metals are shown in 

Table 1. The welded joints were created using a non-

consumable high-carbon, high-chromium steel tool 

known as K18 [10], as shown in Figs.  1 and 2. The 

FSW work was carried out at the Addis Machine Tool 

Industry, EEG, utilizing a Vertical Milling Machining 

Centre, as shown in Fig. 2. This machine features a 

spindle capable of operating at speeds ranging from 

500 to 3000 RPM, with optimal settings for 

aluminium alloys typically between 1000 and 1800 

RPM. A powerful spindle is essential to ensure 

consistent torque at lower speeds. The spindle motors 

deliver 30 kW of power, which is suitable for heavy-

duty welding applications. The machines generally 

have a torque rating of around 400 Nm to handle 

demanding tasks. 

 

Table 1: AL 6082 Composition and Properties. 

             Al                 Si Fe Cu Mn Mg Cr Zn Ti 

Wt. %           96              0.9 0.5 0.1 0.4 0.6 0.25 0.2 0.1 

Ultimate tensile strength, MPa Hardness, HB Elongation, % 

190 81 16 

Additionally, the worktable provides ample space for 

flat plates used in FSW, with standard dimensions of 

800 mm by 400 mm. The study's pipes and plates have 

an outer diameter of 53 mm, a wall thickness of 4 mm, 

and a plate thickness of 9 mm. They are both 

composed of the 6082- aluminum alloy. Table 1 

shows the mechanical properties and chemical 

composition. Tests have been carried out to determine 

the parameters functional range. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The Tool's Geometric Specifications. 

The practical levels of parameters were selected to 

ensure the FSW joints have no obvious exterior flaws 

[12]. Twenty-seven experiments in total are 

performed, as stated in Table 2. With the aid of a CNC 

machine, the welded joints were first cut into the 

desired shapes. According to the ASTM G102 

standard, three tensile samples have been created for 

all runs. A test using a three-electrode cell was used to 

determine the corrosion rate of the FSW joints, as 

shown in the following section. 

 

 

 

 

 

 

Fig. 2 The Fixture and Set Used to Induce FSW for a 

Flange in Schematic Form. 
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2.2 Electrochemical Analysis 

Corrosion tests were conducted using a WENKING 

Mlab multichannel potentiostat and a SCI-Mlab 

corrosion monitoring system. The electrochemical 

setup included an Ag/AgCl reference electrode, a 

platinum plate counter electrode, and 6061 aluminum 

pipe specimens as the working electrodes. All tests 

were performed in a 3.5% NaCl solution with a pH of 

6.8. Specimens for corrosion testing were prepared 

from the base metal, heat-affected zone (HAZ), and 

weldment. 

Table 2: Tests and Findings. 

Run 
FSW process 

parameters 

Corrosion rate 

mm/year 

N D S CR 

1 -1.000 -1.000 -1.000 2.307 

2 -1.000 0.000 -1.000 2.672 

3 -1.000 1.000 -1.000 3.118 

4 -1.000 -1.000 0.000 1.329 

5 -1.000 0.000 0.000 1.357 

6 -1.000 1.000 0.000 1.873 

7 -1.000 -1.000 1.000 1.076 

8 -1.000 0.000 1.000 1.285 

9 -1.000 1.000 1.000 1.623 

10 0.000 -1.000 -1.000 1.1535 

11 0.000 0.000 -1.000 1.336 

12 0.000 1.000 -1.000 1.559 

13 0.000 -1.000 0.000 0.6645 

14 0.000 0.000 0.000 0.6785 

15 0.000 1.000 0.000 0.9365 

16 0.000 -1.000 1.000 0.538 

17 0.000 0.000 1.000 0.6425 

18 0.000 1.000 1.000 0.8115 

19 1.000 -1.000 -1.000 1.307 

20 1.000 0.000 -1.000 1.672 

21 1.000 1.000 -1.000 2.118 

22 1.000 -1.000 0.000 0.329 

23 1.000 0.000 0.000 0.357 

24 1.000 1.000 0.000 0.873 

25 1.000 -1.000 1.000 0.076 

26 1.000 0.000 1.000 0.285 

27 1.000 1.000 1.000 0.623 

 

2.3 MATLAB-Based ANN Modelling for FSW 
Corrosion Rate 

Artificial neural networks (ANNs) are clever 

algorithms with biological inspiration. ANN has 

become increasingly popular in many engineering 

domains because of its intriguing qualities, including 

acquisition, generalization, fast processing, and ease 

of execution. ANNs typically consist of various 

straightforward and intricately coupled processing 

components arranged in layers [13]. 

MATLAB was used to create a multi-layer 

perception to estimate the pace of corrosion. Testing 

was done using experimental data that had not been 

used during training, which was used to train the BP 

first. Out of 27, 70% of the data were used for 

training, while 15% were used for testing and cross-

validation. The following equation [13] normalizes the 

input and output data from 0.1 to 0.9. Modelling Data 

Using Networks and ANN Application Methodology 

No precise mathematical model can accurately 

capture most industrial processes' behaviour since 

these processes are complicated, highly nonlinear, and 

need many input variables. In process modelling for 

monitoring and control, intelligent sensors are utilized 

to estimate variables that are generally unmeasurable 

online, in dynamic system identification, fault 

detection and diagnosis, and ultimately, in process 

control, artificial neural networks have found many 

applications because they are affordable, simple to 

understand, and capable of learning from examples 

[14]. 

Various applications use artificial neural networks 

(ANNs), computational models that simulate the 

operation of biological networks made up of neurons. 

The system has four layers: input, two concealed, and 

output. Each input factor is part of the input layer [15]. 

The output vector is produced in the final layer 

following the data processing from the input layer 

through two hidden layers. Simple synchronous 

processing components, modelled after the biological 

nervous systems, make up neural networks. The 

neuron is the fundamental component of the ANN 

[16]. 

The linkages between neurons are referred to as 

synapses, and each one of these synapses has a weight. 

There are more places where information on the neural 

network modelling approach is presented. The training 

process runs five iterations for each network 

architecture with various random beginning biases and 

weights. A network with two hidden layers that had 

been trained demonstrated reasonable performance 

indications after comparing the effectiveness of 

multiple architectures. Figure 3 depicts the network 

https://dx.doi.org/10.21608/ijmti.2025.337737.1116
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architecture that was created. Thus, the network 

architecture has two input neurons, nine hidden 

neurons, and a nonlinear activation function. A single 

neuron with a linear activation function. The trained 

network weights and biases are displayed in Table 3. 

 

2.4 Simulation of Neural Network 

This study aimed to show that employing neural 

networks to calculate the mechanical parameters of 

welded Al flanges utilizing the FSW approach is 

feasible. The findings indicated that networks can be 

used in these systems instead of other techniques. The 

Levenberg-Marquardt algorithm performs better for 

the suggested NN model because it approximates the 

performance index using a second-order Taylor series 

instead of an approximate order as with the gradient 

descent algorithm. It was discovered that there was 

agreement in the correlations between the measured 

and projected correlation rate values. 
 

APE = (Predicted - Actual) / (Actual) ×100[16](1) 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Design of a Neural Network for FSW 

 

3. Results and discussion 

The corrosion behaviour of friction stir welded 

(FSW) joints is significantly influenced by process 

parameters such as rotation speed, travel speed, and 

shoulder diameter. These parameters determine the 

microstructural characteristics of the weld, which in 

turn affect corrosion resistance. Below is a discussion 

of how each parameter influences the corrosion rate in 

friction-stir welded aluminium alloys. Rotation speed 

plays a crucial role in heat generation and material 

flow during FSW, with a higher rotation speed (1800 

RPM). This leads to higher heat input, which results in 

grain coarsening in the nugget zone (NZ). This can 

accelerate intermetallic compound (IMC) formation 

and oxide inclusion, increasing corrosion 

susceptibility. However, excessive heat may reduce 

residual stresses, slightly improving corrosion 

resistance, Fig. 5. Moderate rotation speed (1400 

RPM) produces a balanced grain structure, reducing 

susceptibility to corrosion. Less thermal input 

minimizes IMC thickness, leading to improved 

corrosion resistance. 

Table 3 presents a lower rotation speed (1000 

RPM), which generates less heat, leading to 

insufficient material flow and potential defects such as 

voids or tunnel defects. These defects create localized 

corrosion sites, increasing the overall corrosion rate. 

Very high or very low rotation speeds may increase 

the corrosion rate, while a moderate speed (1400 

RPM) results in a more uniform grain structure, 

reducing corrosion susceptibility. 

Travel speed influences heat input per unit length 

and the degree of plastic deformation in the welded 

region. Low travel speed (2 mm/min): It produces 

high heat input, producing grain coarsening and 

thicker IMC layers at the interface—the corrosion rate 

increases due to the formation of a heterogeneous 

microstructure. 

 Moderate travel speed (5 mm/min) Results in a 

well-balanced thermal profile, leading to fine equiaxed 

grains in the weld zone. This provides optimal 

corrosion resistance due to a more uniform 

microstructure. High travel speed (7 mm/min) leads to 

lower heat input, reducing IMC formation but 

increasing weld defects like incomplete fusion or 

tunnel defects. These defects can act as localized 

corrosion sites, slightly increasing the corrosion rate. 

Very low travel speed increases corrosion due to 

excessive IMC formation, while very high travel speed 

increases corrosion due to defects. The optimal travel 

speed for lower corrosion rates is around 5 mm/min. 

The shoulder diameter affects the weld's material 

flow, heat input, and surface morphology. Smaller 

shoulder diameter (20 mm) generates lower heat input, 

which may lead to poor material mixing and weld 

defects such as porosity. These defects serve as 

preferential corrosion sites, increasing the corrosion 

rate. Moderate shoulder diameter (30 mm) Provides 

sufficient heat generation and uniform material flow, 

leading to a defect-free weld with fine grains. This 

ultimately results in an enhanced corrosion resistance 

compared to smaller and larger shoulder diameters. 

https://dx.doi.org/10.21608/ijmti.2025.337737.1116
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Larger shoulder diameter (40 mm) produces excessive 

heat, leading to grain coarsening and forming thicker 

IMC layers. It may also cause surface oxidation, 

making the weld more prone to localized corrosion. A 

shoulder diameter of 30 mm provides the best balance 

between heat input and material flow, reducing 

corrosion susceptibility. Optimal FSW parameters for 

the lowest corrosion rate, 1400 rpm, travel speed: ~5 

mm/min, and shoulder diameter: ~30 mm 

Figure 5 displays the corrosion test results for the 

specimens. A graph with a higher negative value or 

potential indicates a higher corrosion rate. Table 3 

shows the corrosion rate value obtained from tests on 

flange FSW samples conducted using the 

electrochemical method with a three-electrode cell 

device and the NOVA 1.11 software [17, 18]. 

Additionally, the flow characteristics of the material 

are also impacted by the pins utilized during the 

welding process [19-23]. 

The BP method with one hidden layer enhanced by 

the training function named Traingdx is employed in 

the current work. The ANN is tested and trained using 

the MATLAB platform. A hidden layer with more 

neurons (5–10) was used to specify the output 

precisely during training. The input parameters for the 

first layer of ANN include the diameter of the tool, 

speed of rotation, and speed of welding. The ANN 

layer of the outer layer measures how quickly welded 

components corrode. This network has been 

successfully trained and tested using known test data. 

Table 3 contains a list of the training settings 

employed in this experiment. Following successful 

training, the neural network reported in this study was 

utilized to forecast the corrosion rate of FS-welded 

joints within the taught range. 

The measured and anticipated values of output in 

Table 3 are close. Artificial neural networks that 

feedforward manner were applied in every instance in 

the current study. The network's output is compared 

using statistical techniques. Errors that arise during the 

learning and testing stages are referred to by the words 

root-mean-square (RMS), absolute fraction of variance 

(R2), and mean error percentage numbers. 

According to Fig 4, the ultimate mean-square error 

is modest. Similar characteristics can be seen in both 

the test and validation set errors. At iteration 124, no 

appreciable overfit occurred. Figure 4 displays the 

linear regression between the network outputs and the 

related targets. In our situation, the training, testing, 

and validation output closely match the target, and the 

overall response's R2-value is just over 0.981. 

Table 3: Measured vs. Predicted values. 

 INPUT OUTPUT Predicted 

Output 

Run N S D CR CR 

1 -1.000 -1.000 -1.000 2.307 2.2298 

2 -1.000 0.000 -1.000 2.672 2.6342 

3 -1.000 1.000 -1.000 3.118 2.6356 

4 -1.000 -1.000 0.000 1.329 1.2173 

5 -1.000 0.000 0.000 1.357 1.5247 

6 -1.000 1.000 0.000 1.873 1.8418 

7 -1.000 -1.000 1.000 1.076 0.86438 

8 -1.000 0.000 1.000 1.285 1.1995 

9 -1.000 1.000 1.000 1.623 1.5446 

10 -1.000 -1.000 -1.000 1.1535 1.0902 

11 0.000 0.000 -1.000 1.336 1.1138 

12 0.000 1.000 -1.000 1.559 1.5082 

13 0.000 -1.000 0.000 0.6645 0.7051 

14 0.000 0.000 0.000 0.6785 0.8621 

15 0.000 1.000 0.000 0.9365 0.96276 

16 0.000 -1.000 1.000 0.538 0.60183 

17 0.000 0.000 1.000 0.6425 0.63029 

18 0.000 1.000 1.000 0.8115 0.88228 

19 1.000 -1.000 -1.000 1.307 0.96761 

20 1.000 0.000 -1.000 1.672 0.80447 

21 -1.000 1.000 -1.000 2.118 0.94338 

22 1.000 -1.000 0.000 0.329 0.26058 

23 1.000 0.000 0.000 0.357 0.31649 

24 1.000 1.000 0.000 0.873 0.62161 

25 1.000 -1.000 1.000 0.076 0.22756 

26 1.000 0.000 1.000 0.285 0.27845 

27 1.000 1.000 1.000 0.623 0.53122 

 

The experimental variation and ANN predictions for 

the mechanical characteristics of the FSW Al flange. 

The measured and anticipated production values are 

incredibly similar. Less than 3% of the time between 

the experiment and the expected ANN architect 3-8-1 

is lost. As a result, the train network may be utilized to 

forecast the tensile strength given the process 

parameters. 

https://dx.doi.org/10.21608/ijmti.2025.337737.1116
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Fig. 4 Analysis of the Trained Network Performance. 

 

Fig. 5 Corrosion Rate Results. 

Conclusions 

For the specified FSW process parameters, the 

created neural network may be utilized to forecast the 

corrosion rate of the welded aluminium flange. 

Outcomes show that the forecast made by the network 

and the experiment outcomes are incredibly similar. 

The R-value is more significant than 0.981 overall for 

testing, validation, and training. It is discovered that 

the 3-8- 1 ANN architect's measurement and error 

anticipated values are fewer than 3%. The study offers 

hope for comprehending the friction stir welding 

procedure for attaching flanges and correlating the 

procedure's variables to the corrosion rate 
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