[1] B. Tan, X. Zhang, Y. Li, H. Chen, X. Ye, Y. Wang, J. Ye, Anatase TiO2 Mesocrystals: Green Synthesis, In Situ Conversion to Porous Single Crystals, and Self-Doping Ti3+ for Enhanced Visible Light-Driven Photocatalytic Removal of NO, Chem. - A Eur. J. 23 (2017) 5478–5487. https://doi.org/10.1002/chem.201605294.
[2] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238 (1972) 37–38. https://doi.org/10.1038/238037a0.
[3] M.A. Hamza, A.N. El-Shazly, S.A. Tolba, N.K. Allam, Novel Bi-based photocatalysts with unprecedented visible light-driven hydrogen production rate: Experimental and DFT insights, Chem. Eng. J. 384 (2020) 123351. https://doi.org/10.1016/j.cej.2019.123351.
[4] A.N. El-Shazly, M.A. Hamza, N.K. Allam, Enhanced photoelectrochemical water splitting via engineered surface defects of BiPO4 nanorod photoanodes, Int. J. Hydrogen Energy. 46 (2021) 23214–23224. https://doi.org/10.1016/j.ijhydene.2021.04.134.
[5] A.N. El-Shazly, A.H. Hegazy, M.M. Rashad, M.F. El-Shahat, N.K. Allam, Ultrathin ALD TiO2 shells for enhanced photoelectrochemical solar fuel generation, J. Alloys Compd. 739 (2018). https://doi.org/10.1016/j.jallcom.2017.12.218.
[6] A.N. El-Shazly, A.H. Hegazy, E.T. El Shenawy, M.A. Hamza, N.K. Allam, Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production, Sol. Energy Mater. Sol. Cells. 220 (2021) 110825. https://doi.org/10.1016/j.solmat.2020.110825.
[7] M.A. Hamza, A.N. El-Shazly, N.K. Allam, Facile template-free one-pot room-temperature synthesis of novel m-Bi(OH)CrO4 microspheres, Mater. Lett. 262 (2020) 127188. https://doi.org/10.1016/j.matlet.2019.127188.
[8] C. Liu, F. Wang, S. Zhu, Y. Xu, Q. Liang, Z. Chen, Controlled charge-dynamics in cobalt-doped TiO2 nanowire photoanodes for enhanced photoelectrochemical water splitting, J. Colloid Interface Sci. 530 (2018) 403–411. https://doi.org/10.1016/j.jcis.2018.07.003.
[9] M.A. Hamza, Z.M. Abou-Gamra, M.A. Ahmed, The critical role of Tween 80 as a ‘green’ template on the physical properties and photocatalytic performance of TiO2 nanoparticles for Rhodamine B photodegradation, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03017-2.
[10] M.A. Ahmed, Z.M. Abou-Gamra, H.A.A. Medien, M.A. Hamza, Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation, J. Photochem. Photobiol. B Biol. 176 (2017) 25–35. https://doi.org/10.1016/j.jphotobiol.2017.09.016.
[11] A. Hegazy, E. El-Shenawy, M. Abdelatef, Decoupling crystallinity and size of TiO2 Nanoparticles of TiO2: Application in large area dye-sensitized solar cells, ISES Sol. World Congr. 2017 - IEA SHC Int. Conf. Sol. Heat. Cool. Build. Ind. 2017, Proc. (2017) 1240–1250. https://doi.org/10.18086/swc.2017.20.05.
[12] A. Hegazy, High performance crystalline TiO2 mesocrystals for enhanced solar fuel, Egypt. J. Chem. 62 (2019) 115–122. https://doi.org/10.21608/EJCHEM.2019.13610.1841.
[13] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A. 115 (2011) 13211–13241. https://doi.org/10.1021/jp204364a.
[14] A. Hegazy, E. Prouzet, Effect of physical chemistry parameters in photocatalytic properties of TiO2 nanocrystals, Comptes Rendus Chim. 16 (2013) 651–659. https://doi.org/10.1016/j.crci.2013.04.008.
[15] M.A. Hamza, S.A. Abd El-Rahman, Z.M. Abou-Gamra, Facile one-pot solid-state fabrication of a novel binary nanocomposite of commercial ZnO and commercial PbCrO4 with enhanced photocatalytic degradation of Rhodamine B dye, Opt. Mater. (Amst). 124 (2022) 111987. https://doi.org/10.1016/j.optmat.2022.111987.
[16] H. Hou, L. Wang, F. Gao, X. Yang, W. Yang, BiVO4@TiO2 core-shell hybrid mesoporous nanofibers towards efficient visible-light-driven photocatalytic hydrogen production, J. Mater. Chem. C. 7 (2019) 7858–7864. https://doi.org/10.1039/c9tc02480h.
[17] H. Ding, M. Xu, S. Zhang, F. Yu, K. Kong, Z. Shen, J. Hua, Organic blue-colored D-A-π-A dye-sensitized TiO2 for efficient and stable photocatalytic hydrogen evolution under visible/near-infrared-light irradiation, Renew. Energy. 155 (2020) 1051–1059. https://doi.org/10.1016/j.renene.2020.04.009.
[18] A.M. Ismael, A.N. El-Shazly, S.E. Gaber, M.M. Rashad, A.H. Kamel, S.S.M. Hassan, Novel TiO2/GO/CuFe2O4 nanocomposite: a magnetic, reusable and visible-light-driven photocatalyst for efficient photocatalytic removal of chlorinated pesticides from wastewater, RSC Adv. 10 (2020) 34806–34814. https://doi.org/10.1039/d0ra02874f.
[19] M.A. Hamza, S.A. Abd El-Rahman, A.N. El-Shazly, E.M. Hashem, R.T. Mohamed, E.M. El-Tanany, M.G. Elmahgary, Facile one-pot ultrasonic-assisted synthesis of novel Ag@RGO/g-C3N4 ternary 0D@2D/2D nanocomposite with enhanced synergetic tandem adsorption-photocatalytic degradation of recalcitrant organic dyes: Kinetic and mechanistic insights, Mater. Res. Bull. 142 (2021) 111386. https://doi.org/10.1016/j.materresbull.2021.111386.
[20] B. Liu, H.M. Chen, C. Liu, S.C. Andrews, C. Hahn, P. Yang, Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential, J. Am. Chem. Soc. 135 (2013) 9995–9998. https://doi.org/10.1021/ja403761s.
[21] J. Yu, G. Dai, Q. Xiang, M. Jaroniec, Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets, J. Mater. Chem. 21 (2011) 1049–1057. https://doi.org/10.1039/c0jm02217a.
[22] S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) 2243–2245. https://doi.org/10.1126/science.1075035.
[23] M.S. Lee, S.S. Hong, M. Mohseni, Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent, J. Mol. Catal. A Chem. 242 (2005) 135–140. https://doi.org/10.1016/j.molcata.2005.07.038.
[24] S. Kim, S.J. Hwang, W. Choi, Visible light active platinum-ion-doped TiO2 photocatalyst, J. Phys. Chem. B. 109 (2005) 24260–24267. https://doi.org/10.1021/jp055278y.
[25] D.H. Kim, K. Sub Lee, Y.S. Kim, Y.C. Chung, S.J. Kim, Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light, J. Am. Ceram. Soc. 89 (2006) 515–518. https://doi.org/10.1111/j.1551-2916.2005.00782.x.
[26] U.G. Akpan, B.H. Hameed, The advancements in sol-gel method of doped-TiO2 photocatalysts, Appl. Catal. A Gen. 375 (2010) 1–11. https://doi.org/10.1016/j.apcata.2009.12.023.
[27] X. Tang, D. Li, Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response, J. Phys. Chem. C. 112 (2008) 5405–5409. https://doi.org/10.1021/jp710468a.
[28] I. V. Baklanova, V.P. Zhukov, V.N. Krasil’nikov, O.I. Gyrdasova, L.Y. Buldakova, E. V. Shalaeva, E. V. Polyakov, M. V. Kuznetsov, I.R. Shein, E.G. Vovkotrub, Fe and C doped TiO2 with different aggregate architecture: Synthesis, optical, spectral and photocatalytic properties, first-principle calculation, J. Phys. Chem. Solids. 111 (2017) 473–486. https://doi.org/10.1016/j.jpcs.2017.08.024.
[29] M.M. Hasan, S.A. Tolba, N.K. Allam, In Situ Formation of Graphene Stabilizes Zero-Valent Copper Nanoparticles and Significantly Enhances the Efficiency of Photocatalytic Water Splitting, ACS Sustain. Chem. Eng. 6 (2018) 16876–16885. https://doi.org/10.1021/acssuschemeng.8b04219.
[30] X. Yu, X. Fan, L. An, Z. Li, J. Liu, Facile synthesis of Ti3+-TiO2 mesocrystals for efficient visible-light photocatalysis, J. Phys. Chem. Solids. 119 (2018) 94–99. https://doi.org/10.1016/j.jpcs.2018.03.024.
[31] M.A. Khan, M. Al-Oufi, A. Tossef, Y. Al-Salik, H. Idriss, On the role of CoO in CoOx/TiO2 for the photocatalytic hydrogen production from water in the presence of glycerol, Catal. Struct. React. 1 (2015) 192–200. https://doi.org/10.1080/2055074X.2015.1124191.
[32] Q. Zhang, N. Bao, X. Wang, X. Hu, X. Miao, M. Chaker, D. Ma, Advanced Fabrication of Chemically Bonded Graphene/TiO2 Continuous Fibers with Enhanced Broadband Photocatalytic Properties and Involved Mechanisms Exploration, Sci. Rep. 6 (2016) 1–15. https://doi.org/10.1038/srep38066.
[33] L. Bahrig, S.G. Hickey, A. Eychmüller, Mesocrystalline materials and the involvement of oriented attachment-a review, CrystEngComm. 16(2014)9408–9424. https://doi.org/10.1039/c4ce00882k.
[34] Y. Liu, Y.E. Du, Y. Bai, J. An, J. Li, X. Yang, Q. Feng, Facile Synthesis of {101}, {010} and [111]-Faceted Anatase-TiO2 Nanocrystals Derived from Porous Metatitanic Acid H2TiO3 for Enhanced Photocatalytic Performance, ChemistrySelect. 3 (2018) 2867–2876. https://doi.org/10.1002/slct.201800018.
[35] S. Dai, Y. Wu, T. Sakai, Z. Du, H. Sakai, M. Abe, Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton, Nanoscale Res. Lett. 5 (2010)1829–1835. https://doi.org/10.1007/s11671-010-9720-0.
[36] E. V. Salomatina, A.S. Loginova, S. Ignatov, A. V. Knyazev, I. V. Spirina, L.A. Smirnova, Structure and Catalytic Activity of Poly(Titanium Oxide) Doped by Gold Nanoparticles in Organic Polymeric Matrix, J. Inorg. Organomet. Polym. Mater. 26 (2016) 1280–1291. https://doi.org/10.1007/s10904-016-0409-4.
[37] W.F. Chen, P. Koshy, Y. Huang, E. Adabifiroozjaei, Y. Yao, C.C. Sorrell, Effects of precipitation, liquid formation, and intervalence charge transfer on the properties and photocatalytic performance of cobalt- or vanadium-doped TiO2 thin films, Int. J. Hydrogen Energy. (2016) 19025–19056. https://doi.org/10.1016/j.ijhydene.2016.08.115.
[38] A.M. Elbanna, K.E. Salem, A.M. Mokhtar, M. Ramadan, M. Elgamal, H. A. Motaweh, H. M. Tourk, M. A-H. Gepreel, N. K. Allam, Ternary Ti–Mo–Fe Nanotubes as Efficient Photoanodes for Solar-Assisted Water Splitting, J. Phys. Chem. C (2021) 125, 12504–12517. https://doi.org/10.1021/acs.jpcc.1c01478
[39] A. Orendorz, A. Brodyanski, J. Lösch, L.H. Bai, Z.H. Chen, Y.K. Le, C. Ziegler, H. Gnaser, Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy, Surf. Sci. 601 (2007) 4390–4394. https://doi.org/10.1016/j.susc.2007.04.127.
[40] S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, Hydrothermal synthesis of rutile TiO2 with hierarchical microspheres and their characterization, CrystEngComm. 13 (2011) 6349–6351. https://doi.org/10.1039/c1ce05928a.
[41] A.N. El-Shazly, G.S. El-Sayyad, A.H. Hegazy, M.A. Hamza, R.M. Fathy, E.T. El Shenawy, N.K. Allam, Superior visible light antimicrobial performance of facet engineered cobalt doped TiO2 mesocrystals in pathogenic bacterium and fungi, Sci. Rep. 11 (2021) 1–14. https://doi.org/10.1038/s41598-021-84989-x.
[42] Y. Zhang, Q. Zhang, T. Xia, D. Zhu, Y. Chen, X. Chen, The Influence of Reaction Temperature on the Formation and Photocatalytic Hydrogen Generation of (001) Faceted TiO2 Nanosheets, ChemNanoMat. 1 (2015) 270–275. https://doi.org/10.1002/cnma.201500030.
[43] X. Li, Z. Guo, T. He, The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance, Phys. Chem. Chem. Phys. 15 (2013) 20037–20045. https://doi.org/10.1039/c3cp53531b.
[44] M. Liu, Q. Zhan, W. Li, R. Li, Q. He, Y. Wang, Effect of Zn doping concentration on optical
band gap of PbS thin films, J. Alloys Compd. 792 (2019) 1000–1007. https://doi.org/10.1016/j.jallcom.2019.04.117.
[45] P. Sudhagar, T. Song, A. Devadoss, J.W. Lee, M. Haro, C. Terashima, V. V. Lysak, J. Bisquert, A. Fujishima, S. Gimenez, U. Paik, Modulating the interaction between gold and TiO2 nanowires for enhanced solar driven photoelectrocatalytic hydrogen generation, Phys. Chem. Chem. Phys. 17 (2015) 19371–19378. https://doi.org/10.1039/c5cp01175b.
[46] A. El-Sayed, N. Atef, A.H. Hegazy, K.R. Mahmoud, R.M.A. Hameed, N.K. Allam, Defect states determined the performance of dopant-free anatase nanocrystals in solar fuel cells, Sol. Energy. 144 (2017) 445–452. https://doi.org/10.1016/j.solener.2017.01.056.
[47] B. Chen, B. Ge, S. Fu, Q. Li, X. Chen, L. Li, J. Wang, Z. Yang, J. Ding, W. Fan, B. Mao, W. Shi, Ex-situ flame co-doping of tin and tungsten ions in TiO2 nanorod arrays for synergistic promotion of solar water splitting, Chem. Eng. Sci. 226 (2020). https://doi.org/10.1016/j.ces.2020.115843.