[1] E.P. George, D. Raabe and R.O. Ritchie, High-entropy alloys, Nature Reviews Materials, 4, 2019, 515.
[2] Z.P. Lu a, * , H. Wang a , M.W. Chen b , I. Baker c , J.W. Yeh d , C.T. Liu e , T.G. Nieh, An assessment on the future development of high-entropy alloys: Summary from a recent workshop,
Intermetallics,
66, 2015, 67.
[3]
X. Wang,
W. Guo and
Y. Fu , High-entropy alloys: emerging materials for advanced functional applications,
J. Mater. Chem. A, 9, 2021, 663.
[4] J.W.Yeh. Microstructures and properties of high-entropy alloys, Adv. Eng. Mater., 6, 2004, 299.
[5] D.B. Miracle, O.N. Senkov,A critical review of high entropy alloys and related concepts, Acta Materialia,Vol.122, 2017,448.
[6] P.-K. Huang, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv Eng. Mater. 6, 2004, 74e78.
[7] J.-W. Yeh, S.-K. Chen, J.-W. Gan, S.-J. Lin, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.- Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A 35A, 2004, 2533e2536.
[8] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.- Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6, 2004, 299e303.
[9] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375e377, 2004, 213e218.
[10] T.K. Chen, T.T. Shun, J.-W. Yeh, M.S. Wong, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 188e189, 2004, 193e200.
[11] C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A 35A, 2004, 1465e1469.
[12] R. Raghavan, K.C. Hari Kumar, B.S. Murty, Analysis of phase formation in multi-component alloys, Journal of Alloys and Compounds. 544, 2012,152.
[13] S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid solution phase or amorphous phase, Prog. Nat. Sci. 21, 2011, 433e446.
[14] S. Guo, C.T. Liu, Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions, Chin. J. Nat. 35, 2013, 85e96.
[15] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132, 2012, 233e238.
[16] Yong Zhang, and Qiuwei Xing, High Entropy Alloys: Manufacturing Routes, Encyclopedia of Materials: Metals and Alloys, 2020, 327.
[17] K.K. Alaneme, M.O. Bodunrina, S.R. Oke, Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review,
Journal of Materials Research and Technology, 5, 2016, 384.
[18] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, 9, 2 0 1 6, 2 2 7.
[19] J.M. Sanchez, I. Vicario, J. Albizuri , T. Guraya , N.E. Koval and J.C. Garcia Compound Formation and Microstructure of As-Cast High Entropy Aluminums, Metals 8, 2018, 167.
[20] C. Varvenne a, 1 , G.P.M. Leyson b, 1 , M. Ghazisaeidi c , W.A. Curtin, Solute strengthening in random alloys,
Acta Materialia, 124, 2017, 660.
[21] M.C. Gao, Jien-Wei. Yeh, P.K. Liaw, Y. Zhang (Eds). High-Entropy Alloys Fundamentals and Applications, ISBN 978-3-319-27013-5 (eBook), Springer International Publishing Switzerland, 2016.
[22] B. Canton, F. Audebert, M. Galano, KB. Kim, PJ. Warren. Novel multicomponent alloys. Warren J Metastable Nanocryst Mater, 24, 2005,1.
[23] B.Canton. High-entropy alloys. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P, editors. Encyclopedia of materials: science and technology. ISBN 978-0-08-043152-9, 2011.
[24] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Curr. Sci. 85, 2003, 1404.
[25] He Q and Yang Y (2018) On Lattice Distortion in High Entropy Alloys. Front. Mater. 5:42. doi: 10.3389/fmats.2018.00042.
[26] I.A. Tomlin, S.D. Kaloshkin, ‘High entropy alloys’d‘semi-impossible’ regular solid solutions? Mat. Sci. Technol. 31, 2015, 1231.
[27] Yeh JW. Recent progress in high-entropy alloys. Ann Chim-Sci Mat. 31, 2006, 633.
[28] M.H. Tsai and Jien-Wei Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2, 2014,107.
[29] Y. Zhang, T. Zuo , Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P.Lu. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 2014, 1.
[30] E. J. Pickering & N. G. Jones. High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews, 61, 2016, 183.
[31] D.R. Gaskell. Introduction to the thermodynamics of materials. 3rd ed.Washinton (DC): Taylor & Francis; 1995.
[32] Y. Zhang, Y. Zhou, X. Hui et al. Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci. China Ser. G-Phys. Mech. As 51, 2008, 427.
[33] E.P.George, D. Raabe, R.O. Ritchie. High-entropy alloys. Nat Rev Mater, 4, 2019, 515.
[34] R.A. Swalin, Thermodynamics of Solid, 2nd ed. (New York: Wiley), 1972, 263.
[35] M.-H. Tsai, K.-Y. Tsai, C. Lee, J.-W. Yeh. Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater Res Lett. 2013; 1:207–212.
[36] J-W, Yeh. Recent progress in high-entropy alloys. Presentation at Changsha meeting; 2011.
[37] Z. Lyu, C. Lee, S. Y. Wang, X. Fan, Jien-Wei Yeh, and P.K. Liaw, Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High Entropy Alloys: A Review, Metallurgical and Materials Transaction A, 50A, 2019, 1.
[38] Y. Zhang, Q-W. Xing, High Entropy Alloys-Manufacturing routes, Encyclopedia of Materials: Metals and Alloys, 2020, 12123.
[39] Y. Zhang, C. Koch, S.G. Ma, H. Zhang, Y. Pan. Fabrication routes. In: Gao, M.C., Yeh, J-.W., Liaw, P.K., Zhang, Y. (Eds.), High-Entropy Alloys, Springer International Publishing, 2016, 151.
[40] Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 41, 2006, 763.
[41] S. Praveen, B.S. Murty, and R.S. Kottada: JOM,65, 2013, 1797.
[43] D.Y. Li, W.B. Liao, G.H. Geng, Y. Zhang, S.L. Zhang. Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique. International Journal of Minerals, Metallurgy and Materials 23, 2016, 928.
[44] V. Dolique, AL. Thomann, P. Brault. High-entropy alloys deposited by magnetron sputtering. IEEE Trans Plasma Sci, 39, 2011, 2478.
[45] X.H. Yan, X.H. Li, J.S. Zhang, W.R., Zhang. A brief review of high-entropy films. Materials Chemistry and Physics 210, 2018, 12.
[46] M-H. Tsai, J-W. Yeh. High-Entropy Alloys: A Critical Review, Materials Research Letters, 2:3,2014, 107.
[47] H. Liang, B. Gao, Y. Li, Q. Nie, Z. Cao. Microstructures and wear resistance of Al1.5CrFeNiTi0.5 and Al1.5CrFeNiTi0.5W0.5 high entropy alloy coatings manufactured by laser cladding. Materials Science Forum, 956, 2019, 154.
[48] Unabia, R.; Candidato, R., Jr.; Pawłowski, L. Current Progress in Solution Precursor Plasma Spraying of Cermets: A Review.
Metals 2018,
8, 420.
https://doi.org/10.3390/met8060420
[49] N. Ma , S. Liu, W. Liu, L. Xie, D. Wei, L. Wang, L. Li, B. Zhao and Y.Wang, Front. Bioeng. Research Progress of Titanium-Based High Entropy Alloy: Methods, Properties, and Applications, Biotechnol., November, 2020.
[50] Zhang, W., Liaw, P., Zhang, Y.A novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy 20,2018, 951.
[51] S.G.Ma, , J.W.Qiao, Z.H. Wang, H.J. Yang, Y. Zhang. Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Materials & Design 88, 2015, 1057.
[52] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 2011, 698.
[53] G.Q.R. Chen, P. K. Liaw, Y. Gao, L. Wang, Y. Su, H. Ding, J. Guo and X. Li, An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates. Nanoscale, 12, 2020, 3965.
[54] N. Radhika, Analysis of Tribological Behavior of Functionally Graded LM13 Aluminum/TiS2 Composite Using Design of Experiments, Tribology in Industry, 38, 2016, 425.
[55] Christian Lindecke, Wikipedia.
[56] S El-Hadad, M. Ibrahim, and M. Mourad, Effect of Heat Treatment and Titanium Addition on the Microstructure and Mechanical Properties of Cast Fe31Mn28 Ni15Al24.5Tix High-Entropy Alloys, Advances in materials and engineering. 2019, ID 2157592,
[57] S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang. Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM, 67, 2015, 2340.
[58] Xia, S., Gao, M.C., Yang, T., Liaw, P.K., Zhang, Y. Phase stability and microstructures of high entropy alloys ion irradiated to high doses. Journal of Nuclear Materials 480, 2016, 100.
[60] Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59, 2011,182.
[61] Li, R.X., Liaw, P.K., Zhang, Y., 2017b. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Materials Science and Engineering: A 707, 2017b, 668.
[63] Y.J, Zhou, Y.J., Zhang, Y., Wang, Y.L., Chen, G.L., 2007. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied Physics Letters 90, 181904
[64] R.C. Reed. The Superalloys: Fundamentals and Applications. Cambridge University Press, 2006, Cambridge, UK.
[65] E. Çadırl, A. Aker , Y. Kaygısız , M. Şahind, Influences of Growth Velocity and Fe Content on Microstructure, Microhardness and Tensile Properties of Directionally Solidified Al-1.9Mn-xFe Ternary Alloys, Materials Research, Mai, 2017.
[66] Ma, S.G., Zhang, S.F., Gao, M.C., Liaw, P.K., Zhang, Y., 2013. A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by Bridgman solidification. JOM, 65, 1751–1758.
[67] Zuo, T., Yang, X., Liaw, P.K., Zhang, Y., 2015. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67, 171–176.
[68] S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, Y. Zhang,Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification,-Intermetallics, 54, 2014, 104.[66] Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys, 109, 2011,103505.
[69] Wang FJ, Zhang Y, Chen GL, Davies HA. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy. Int J Mod Phys B 23, 2009,1254.
[70] Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys, 109, 2011,103505.
[71] Y.J. Zhou, Y. Zhang, Y.L. Wang YL, G.L. Chen. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett. 90, 2007, 181904.
[72] Y. Zhang, Z.P. Lu, S.G. Ma, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Communications, 4, 2014, 57.
[73] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 15, 2007, 357.
[74] M. Seifi, D. Li, Z. Yong, Z. et al. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys. JOM, 67, 2015, 2288.
[75] J.K. Choi, D.H. Seo, J.S. Lee, K.K. Um, W.Y. Choo. Formation of ultrafine ferrite by strain-induced dynamic transformation in plain low carbon steel. ISIJ Int 43, 2003, 746.
[76] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh. Microstructure and mechanical property of As-cast, homogenized, and deformed AlxCoCrFeNi (0 6 x 6 2) high-entropy alloys. J Alloy Compd, 488, 2009, 57.
[77] S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun,J.W. Yeh. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mater Sci Eng A 527, 2010, 5818.
[78] S. Chikumba and V. Vasudeva Rao, High Entropy Alloys: Development and Applications, 7th International Conference on Latest Trends in Engineering & Technology (ICLTET'2015) Nov. 26-27, 2015 Irene, Pretoria.
[79] M. Dada, P. Popoola, S. Adeosun and N. Mathe, High Entropy Alloys for Aerospace Applications, InTech Open, 2019.
[80] K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na. Dual-phase high-entropy alloys for high-temperature structural applications, Journal of Alloys and Compounds, 728,2017,1235.
[81] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R.O. Ritchie, Science, 345, 2014, 1153.
[82] Pickering, E.J.; Carruthers, A.W.; Barron, P.J.; Middleburgh, S.C.; Armstrong, D.E.J.; Gandy, A.S. High-Entropy Alloys for Advanced Nuclear Applications.
Entropy 2021,
23, 98.
https://doi.org/10.3390/e23010098
[83] Y. Yuan, Y.Wu, Z. Yang, X. Liang, Z. Lei, H. Huang et al. Formation, structure and properties of biocompatible TiZrHfNbTa high entropy alloys. Mater. Res. Lett. 7, 2019, 225.
[84] N. Ma, S. Liu, L. Xie, D. Wei, L. Wang, L. Li, B. Zhao and Y. Wang, Research Progress of Titanium-Based High Entropy Alloy: Methods, Properties, and Applications. Front. Bioeng. Biotechnol., 8, 2020, 603522.
[85] M. E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts, New York: Springer Verlag, 2010.
[86] M. Srikanth, A.R. Annamalai, A. Muthuchamy and Chun-Ping Jen,A Review of the Latest Developments in the Field of Refractory High-Entropy Alloys, Crystals, 11,2021, 11, 612.
[87] Zhou, Q.; Sheikh, S.; Ou, P.; Chen, D.; Hu, Q.; Guo, S. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions. Electrochem. Commun. 2019, 98, 63.