El-Hadad, S. (2022). High Entropy Alloys: The Materials of Future. International Journal of Materials Technology and Innovation, 2(1), 67-84. doi: 10.21608/ijmti.2022.118565.1046
S. El-Hadad. "High Entropy Alloys: The Materials of Future". International Journal of Materials Technology and Innovation, 2, 1, 2022, 67-84. doi: 10.21608/ijmti.2022.118565.1046
El-Hadad, S. (2022). 'High Entropy Alloys: The Materials of Future', International Journal of Materials Technology and Innovation, 2(1), pp. 67-84. doi: 10.21608/ijmti.2022.118565.1046
El-Hadad, S. High Entropy Alloys: The Materials of Future. International Journal of Materials Technology and Innovation, 2022; 2(1): 67-84. doi: 10.21608/ijmti.2022.118565.1046
Central Metallurgical Research & Development Institute, P.O. Box 87 Helwan, Cairo, Egypt
Abstract
High Entropy Alloys (HEAs) have recently attracted the researchers’ attention as a new track in materials design. Research on HEAs has stimulated new ideas and inspired the exploration of the enormous composition space offered by multi-principal element alloys. HEAs can be simply described as alloying systems that are composed of multi-elements in equimolar or near equimolar ratio. Therefore, HEAs have unique properties which significantly differ from the traditional alloy systems. The current review article is concerned with the definition of HEAs, their development history, and their four core effects which make them different from the traditional alloys. Fabrication routes of HEAs with special emphasis on processing via casting technique are surveyed. The innovative microstructure of HEAs that lead to extraordinary mechanical properties is also discussed. Finally, the promising industrial applications and the future insights of these multi principal alloys are covered.
[1] E.P. George, D. Raabe and R.O. Ritchie, High-entropy alloys, Nature Reviews Materials, 4, 2019, 515.
[2] Z.P. Lu a, * , H. Wang a , M.W. Chen b , I. Baker c , J.W. Yeh d , C.T. Liu e , T.G. Nieh, An assessment on the future development of high-entropy alloys: Summary from a recent workshop, Intermetallics, 66, 2015, 67.
[3] X. Wang, W. Guo and Y. Fu , High-entropy alloys: emerging materials for advanced functional applications,J. Mater. Chem. A, 9, 2021, 663.
[4] J.W.Yeh. Microstructures and properties of high-entropy alloys, Adv. Eng. Mater., 6, 2004, 299.
[5] D.B. Miracle, O.N. Senkov,A critical review of high entropy alloys and related concepts, Acta Materialia,Vol.122, 2017,448.
[6] P.-K. Huang, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv Eng. Mater. 6, 2004, 74e78.
[7] J.-W. Yeh, S.-K. Chen, J.-W. Gan, S.-J. Lin, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.- Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A 35A, 2004, 2533e2536.
[8] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.- Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6, 2004, 299e303.
[9] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375e377, 2004, 213e218.
[10] T.K. Chen, T.T. Shun, J.-W. Yeh, M.S. Wong, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 188e189, 2004, 193e200.
[11] C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A 35A, 2004, 1465e1469.
[12] R. Raghavan, K.C. Hari Kumar, B.S. Murty, Analysis of phase formation in multi-component alloys, Journal of Alloys and Compounds. 544, 2012,152.
[13] S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid solution phase or amorphous phase, Prog. Nat. Sci. 21, 2011, 433e446.
[14] S. Guo, C.T. Liu, Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions, Chin. J. Nat. 35, 2013, 85e96.
[15] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132, 2012, 233e238.
[16] Yong Zhang, and Qiuwei Xing, High Entropy Alloys: Manufacturing Routes, Encyclopedia of Materials: Metals and Alloys, 2020, 327.
[17] K.K. Alaneme, M.O. Bodunrina, S.R. Oke, Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review, Journal of Materials Research and Technology, 5, 2016, 384.
[18] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, 9, 2 0 1 6, 2 2 7.
[19] J.M. Sanchez, I. Vicario, J. Albizuri , T. Guraya , N.E. Koval and J.C. Garcia Compound Formation and Microstructure of As-Cast High Entropy Aluminums, Metals 8, 2018, 167.
[20] C. Varvenne a, 1 , G.P.M. Leyson b, 1 , M. Ghazisaeidi c , W.A. Curtin, Solute strengthening in random alloys, Acta Materialia, 124, 2017, 660.
[21] M.C. Gao, Jien-Wei. Yeh, P.K. Liaw, Y. Zhang (Eds). High-Entropy Alloys Fundamentals and Applications, ISBN 978-3-319-27013-5 (eBook), Springer International Publishing Switzerland, 2016.
[22] B. Canton, F. Audebert, M. Galano, KB. Kim, PJ. Warren. Novel multicomponent alloys. Warren J Metastable Nanocryst Mater, 24, 2005,1.
[23] B.Canton. High-entropy alloys. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P, editors. Encyclopedia of materials: science and technology. ISBN 978-0-08-043152-9, 2011.
[27] Yeh JW. Recent progress in high-entropy alloys. Ann Chim-Sci Mat. 31, 2006, 633.
[28] M.H. Tsai and Jien-Wei Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2, 2014,107.
[29] Y. Zhang, T. Zuo , Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P.Lu. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 2014, 1.
[30] E. J. Pickering & N. G. Jones. High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews, 61, 2016, 183.
[31] D.R. Gaskell. Introduction to the thermodynamics of materials. 3rd ed.Washinton (DC): Taylor & Francis; 1995.
[32] Y. Zhang, Y. Zhou, X. Hui et al. Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci. China Ser. G-Phys. Mech. As 51, 2008, 427.
[34] R.A. Swalin, Thermodynamics of Solid, 2nd ed. (New York: Wiley), 1972, 263.
[35] M.-H. Tsai, K.-Y. Tsai, C. Lee, J.-W. Yeh. Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater Res Lett. 2013; 1:207–212.
[36] J-W, Yeh. Recent progress in high-entropy alloys. Presentation at Changsha meeting; 2011.
[37] Z. Lyu, C. Lee, S. Y. Wang, X. Fan, Jien-Wei Yeh, and P.K. Liaw, Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High Entropy Alloys: A Review, Metallurgical and Materials Transaction A, 50A, 2019, 1.
[38] Y. Zhang, Q-W. Xing, High Entropy Alloys-Manufacturing routes, Encyclopedia of Materials: Metals and Alloys, 2020, 12123.
[39] Y. Zhang, C. Koch, S.G. Ma, H. Zhang, Y. Pan. Fabrication routes. In: Gao, M.C., Yeh, J-.W., Liaw, P.K., Zhang, Y. (Eds.), High-Entropy Alloys, Springer International Publishing, 2016, 151.
[40] Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 41, 2006, 763.
[41] S. Praveen, B.S. Murty, and R.S. Kottada: JOM,65, 2013, 1797.
[43] D.Y. Li, W.B. Liao, G.H. Geng, Y. Zhang, S.L. Zhang. Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique. International Journal of Minerals, Metallurgy and Materials 23, 2016, 928.
[44] V. Dolique, AL. Thomann, P. Brault. High-entropy alloys deposited by magnetron sputtering. IEEE Trans Plasma Sci, 39, 2011, 2478.
[45] X.H. Yan, X.H. Li, J.S. Zhang, W.R., Zhang. A brief review of high-entropy films. Materials Chemistry and Physics 210, 2018, 12.
[46] M-H. Tsai, J-W. Yeh. High-Entropy Alloys: A Critical Review, Materials Research Letters, 2:3,2014, 107.
[47] H. Liang, B. Gao, Y. Li, Q. Nie, Z. Cao. Microstructures and wear resistance of Al1.5CrFeNiTi0.5 and Al1.5CrFeNiTi0.5W0.5 high entropy alloy coatings manufactured by laser cladding. Materials Science Forum, 956, 2019, 154.
[48] Unabia, R.; Candidato, R., Jr.; Pawłowski, L. Current Progress in Solution Precursor Plasma Spraying of Cermets: A Review. Metals 2018, 8, 420. https://doi.org/10.3390/met8060420
[49] N. Ma , S. Liu, W. Liu, L. Xie, D. Wei, L. Wang, L. Li, B. Zhao and Y.Wang, Front. Bioeng. Research Progress of Titanium-Based High Entropy Alloy: Methods, Properties, and Applications, Biotechnol., November, 2020.
[50] Zhang, W., Liaw, P., Zhang, Y.A novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy 20,2018, 951.
[51] S.G.Ma, , J.W.Qiao, Z.H. Wang, H.J. Yang, Y. Zhang. Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Materials & Design 88, 2015, 1057.
[52] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 2011, 698.
[53] G.Q.R. Chen, P. K. Liaw, Y. Gao, L. Wang, Y. Su, H. Ding, J. Guo and X. Li, An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates. Nanoscale, 12, 2020, 3965.
[54] N. Radhika, Analysis of Tribological Behavior of Functionally Graded LM13 Aluminum/TiS2 Composite Using Design of Experiments, Tribology in Industry, 38, 2016, 425.
[55] Christian Lindecke, Wikipedia.
[56] S El-Hadad, M. Ibrahim, and M. Mourad, Effect of Heat Treatment and Titanium Addition on the Microstructure and Mechanical Properties of Cast Fe31Mn28 Ni15Al24.5Tix High-Entropy Alloys, Advances in materials and engineering. 2019, ID 2157592,
[57] S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang. Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM, 67, 2015, 2340.
[58] Xia, S., Gao, M.C., Yang, T., Liaw, P.K., Zhang, Y. Phase stability and microstructures of high entropy alloys ion irradiated to high doses. Journal of Nuclear Materials 480, 2016, 100.
[60] Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59, 2011,182.
[61] Li, R.X., Liaw, P.K., Zhang, Y., 2017b. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Materials Science and Engineering: A 707, 2017b, 668.
[62] C. Szybkosci, C. Stopow, W. Metodach, Estimation Of Cooling Rates In Suction Casting And Copper-Mold Casting Processes, Archives of Metallurgy and Materials, June 2015.
[64] R.C. Reed. The Superalloys: Fundamentals and Applications. Cambridge University Press, 2006, Cambridge, UK.
[65] E. Çadırl, A. Aker , Y. Kaygısız , M. Şahind, Influences of Growth Velocity and Fe Content on Microstructure, Microhardness and Tensile Properties of Directionally Solidified Al-1.9Mn-xFe Ternary Alloys, Materials Research, Mai, 2017.
[66] Ma, S.G., Zhang, S.F., Gao, M.C., Liaw, P.K., Zhang, Y., 2013. A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by Bridgman solidification. JOM, 65, 1751–1758.
[67] Zuo, T., Yang, X., Liaw, P.K., Zhang, Y., 2015. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67, 171–176.
[68] S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, Y. Zhang,Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification,-Intermetallics, 54, 2014, 104.[66] Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys, 109, 2011,103505.
[69] Wang FJ, Zhang Y, Chen GL, Davies HA. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy. Int J Mod Phys B 23, 2009,1254.
[70] Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys, 109, 2011,103505.
[71] Y.J. Zhou, Y. Zhang, Y.L. Wang YL, G.L. Chen. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett. 90, 2007, 181904.
[72] Y. Zhang, Z.P. Lu, S.G. Ma, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Communications, 4, 2014, 57.
[73] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 15, 2007, 357.
[74] M. Seifi, D. Li, Z. Yong, Z. et al. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys. JOM, 67, 2015, 2288.
[75] J.K. Choi, D.H. Seo, J.S. Lee, K.K. Um, W.Y. Choo. Formation of ultrafine ferrite by strain-induced dynamic transformation in plain low carbon steel. ISIJ Int 43, 2003, 746.
[76] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh. Microstructure and mechanical property of As-cast, homogenized, and deformed AlxCoCrFeNi (0 6 x 6 2) high-entropy alloys. J Alloy Compd, 488, 2009, 57.
[77] S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun,J.W. Yeh. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mater Sci Eng A 527, 2010, 5818.
[78] S. Chikumba and V. Vasudeva Rao, High Entropy Alloys: Development and Applications, 7th International Conference on Latest Trends in Engineering & Technology (ICLTET'2015) Nov. 26-27, 2015 Irene, Pretoria.
[79] M. Dada, P. Popoola, S. Adeosun and N. Mathe, High Entropy Alloys for Aerospace Applications, InTech Open, 2019.
[80] K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na. Dual-phase high-entropy alloys for high-temperature structural applications, Journal of Alloys and Compounds, 728,2017,1235.
[81] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R.O. Ritchie, Science, 345, 2014, 1153.
[83] Y. Yuan, Y.Wu, Z. Yang, X. Liang, Z. Lei, H. Huang et al. Formation, structure and properties of biocompatible TiZrHfNbTa high entropy alloys. Mater. Res. Lett. 7, 2019, 225.
[84] N. Ma, S. Liu, L. Xie, D. Wei, L. Wang, L. Li, B. Zhao and Y. Wang, Research Progress of Titanium-Based High Entropy Alloy: Methods, Properties, and Applications. Front. Bioeng. Biotechnol., 8, 2020, 603522.
[85] M. E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts, New York: Springer Verlag, 2010.
[86] M. Srikanth, A.R. Annamalai, A. Muthuchamy and Chun-Ping Jen,A Review of the Latest Developments in the Field of Refractory High-Entropy Alloys, Crystals, 11,2021, 11, 612.
[87] Zhou, Q.; Sheikh, S.; Ou, P.; Chen, D.; Hu, Q.; Guo, S. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions. Electrochem. Commun. 2019, 98, 63.